Ionic changes during the production of *Litopenaeus* vannamei fed two feeds of differing protein content in a zero-exchange, biofloc-dominated system

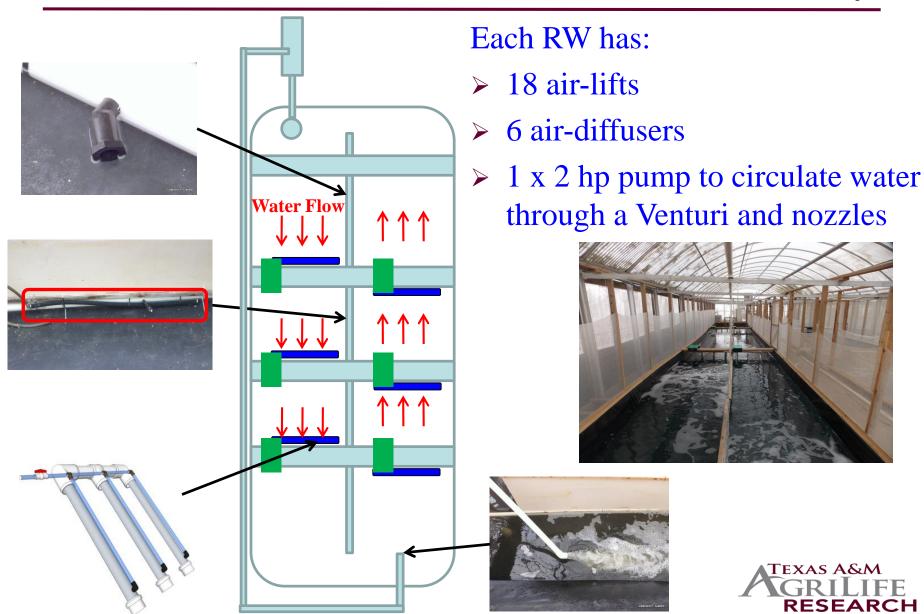
David Prangnell¹, Leandro Castro¹, Abdulmehdi S. Ali², Thomas Zeigler³, Craig Browdy³, Tim Markey³, Darrin Honious⁴, and Tzachi Samocha¹

¹Texas A&M AgriLife Research Mariculture Lab at Flour Bluff, Corpus Christi, Texas ²Earth and Planetary Sciences Dept., University of New Mexico, Albuquerque, New Mexico ³Zeigler Bros., Gardners, Pennsylvania ⁴YSI, Yellow Springs, Ohio

Introduction

- ➤ Water composition in RAS will change over time without remediation: NO₃, PO₄, alkalinity, solids, phytoplankton and microbial density, trace elements
- ➤ Heavy metals may also accumulate in culture water, biofloc, and shrimp tissue
- ➤ These changes may reduce shrimp and bacterial performance and compromise marketability
- ➤ Ionic changes and their interactions with feed and water in limited exchange, biofloc dominated shrimp culture systems need to be established

Objectives


- ➤ To evaluate the use of a commercial (HI-35) and an experimental (EXP-14) feed formulated for superintensive biofloc-dominated shrimp production systems for *Litopenaeus vannamei* under no water exchange
- ➤ To study the changes in selected water quality indicators throughout the trial
- ➤ To monitor changes in the ionic profile of shrimp and culture water throughout the trial

- ➤ Four 40 m³ EPDM-lined RWs were filled with biofloc-rich water (35 m³) from an earlier nursery trial, and chlorinated natural seawater (5 m³)
- > Salinity was adjusted to 30 ppt
- ➤ RWs stocked at 457/m³ with Taura Resistant/Fast-Growth juveniles (5.3 g) raised at the lab from PL (Shrimp Improvement Systems, Islamorada, FL)
- ➤ No water exchange*
- > Study duration: 48 d

Two RWs were fed Shrimp GR Hyper-Intensive (HI-35) feed while the other two received Shrimp EXP-14 (EXP) feed (*Zeigler Bros., Gardners, PA*)

Component	HI-35	EXP
Crude Protein (%)	35	40
Lipid (%)	7	9
Fiber (%)	2	2
Phosphorus (%)	_	1
VPak TM	\checkmark	\checkmark

- > Feed was distributed 24/7 using belt feeders
- ➤ Rations adjusted according to twice weekly growth samples and observations of mortality

Water Quality

➤ Every RW had an optical DO monitoring probe and YSI 5500D monitoring system (YSI Inc., Yellow Springs, OH)

- ➤ Alkalinity adjusted to 160 mg L⁻¹ (as CaCO₃) using NaHCO₃ every 2nd day
- ➤ pH adjusted to >7 using NaOH on days 33 40
- ➤ O₂ supplemented from day 14 onwards
- ➤ A probiotic was added every 1-3 days: Ecopro[®] (*EcoMicrobials*, *LLC*, *Miami*, *FL*)

Solids Control

- ➤ One Foam Fractionator (*VL 65*Aquatic Eco Systems, Apopka, FL) and
 450 L Settling Tank per RW to
 control particulate matter and
 dissolved organics
- ➤ Target TSS: 200-300 mg L⁻¹
- ➤ Target SS: 10-14 mL L⁻¹

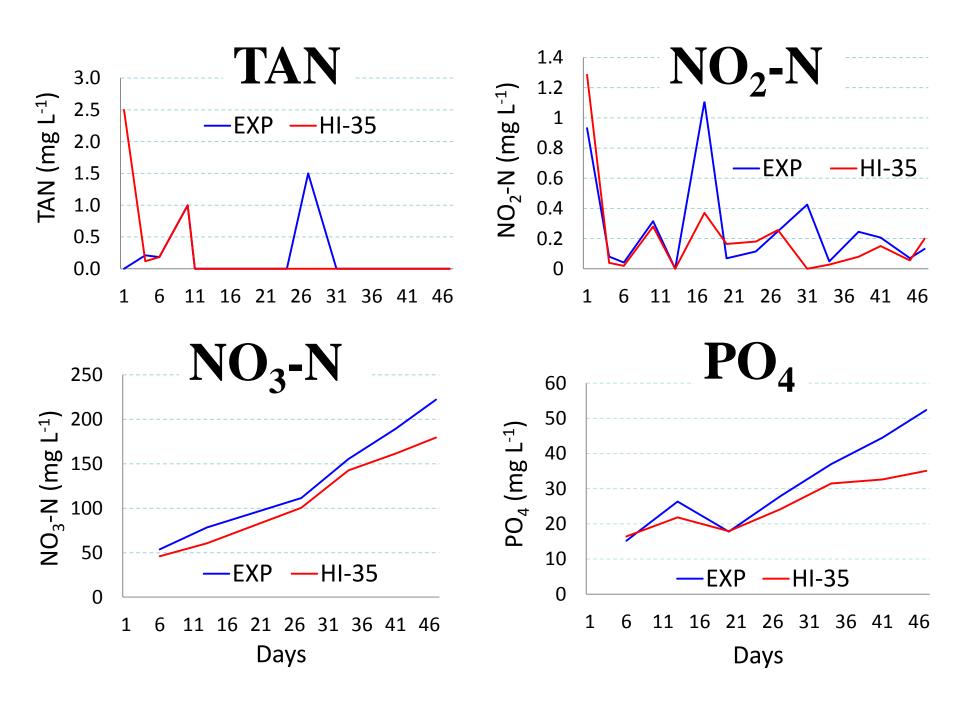
Ionic Composition

- > 500 mL water samples collected on days 0, 5, 29 & 48
- ➤ Shrimp sampled on days 0, 29 & 48 (10 shrimp/RW) & frozen
- Shrimp were later weighed, dissected, dried & ground
- ➤ Acid digestion & ICP-OES

Shrimp Performance

- ➤ No significant differences were found in shrimp performance between feed types
- ➤ Mortality increased towards the end of the trial due to confirmed *Vibrio* infections

Shrimp Performance

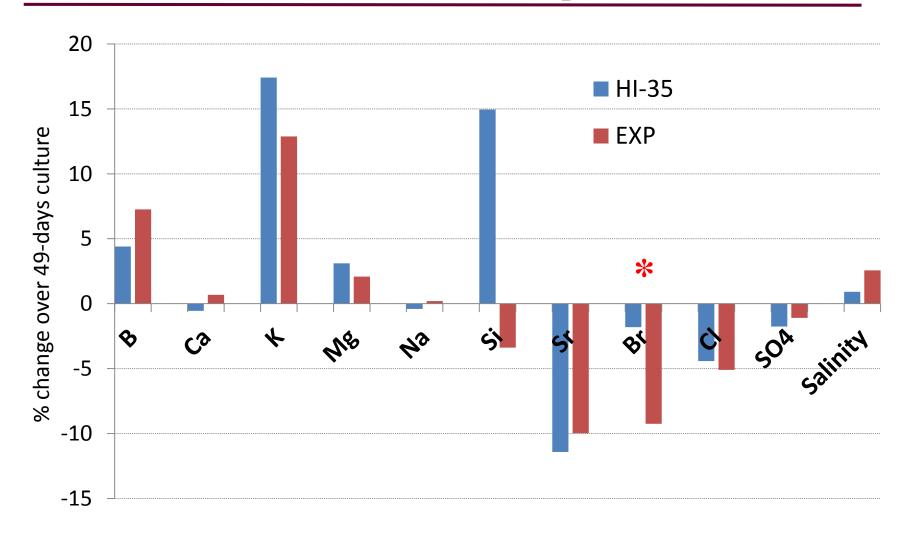

	HI-35	EXP-14
Final Weight (g)	19.82 ± 0.38	21.46 ± 1.69
Growth (g/wk)	2.10 ± 0.02	2.33 ± 0.21
Total Biomass (kg)	289.5 ± 22.9	294.4 ± 27.9
Yield (kg/m ³)	7.24 ± 0.57	7.36 ± 0.70
FCR	1.68 ± 0.22	1.63 ± 0.22
Survival (%)	79.86±4.78	75.57 ± 13.07

Daily Water Quality

	HI-35		EXP-14	
	Mean	Min - Max	Mean	Min - Max
Temperature (°C)	30.0	27.8 - 31.8	29.9	27.8 - 31.9
DO (mg L ⁻¹)	5.3	3.5 - 6.9	5.3	3.8 - 6.8
рН	7.5	6.8 - 8.0	7.5	6.7 - 8.0
Salinity (ppt)	30.3	29.6 - 31.2	30.4	29.7 - 31.3

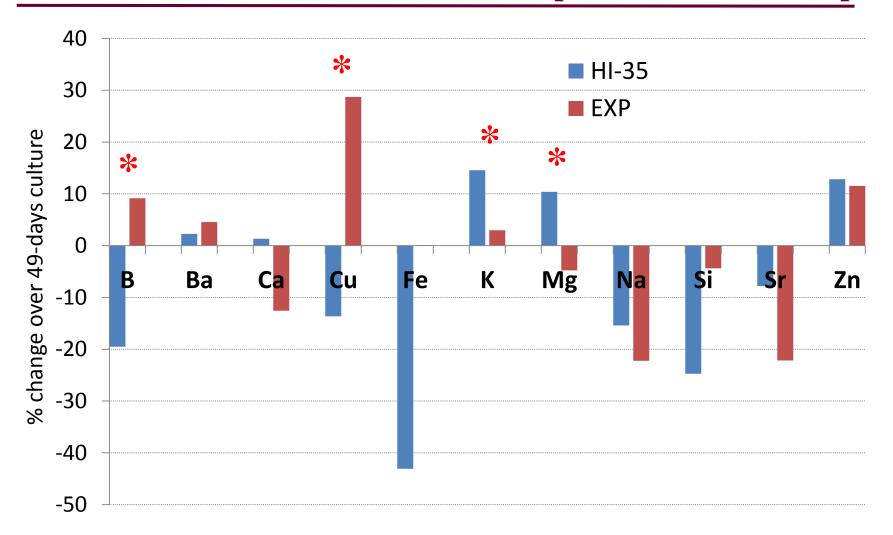
	HI-35		EXP-14	
	Mean	Min-Max	Mean	Min-Max
Alkalinity (mg L ⁻¹)	158	102-199	143	109-189
TSS (mg L ⁻¹)	348	150-533	364	175-550
VSS (mg L ⁻¹)	253	142-367	221	117-288
SS (mL L ⁻¹)	26.7	8-90	11.2	3.5-31
Turbidity (NTU)	147	94-202	161	102-241

NaHCO₃ added/RW- HI-35: 27.5 kg (0.69 kg/m³); EXP: 40.8 kg (1.02 kg/m³)

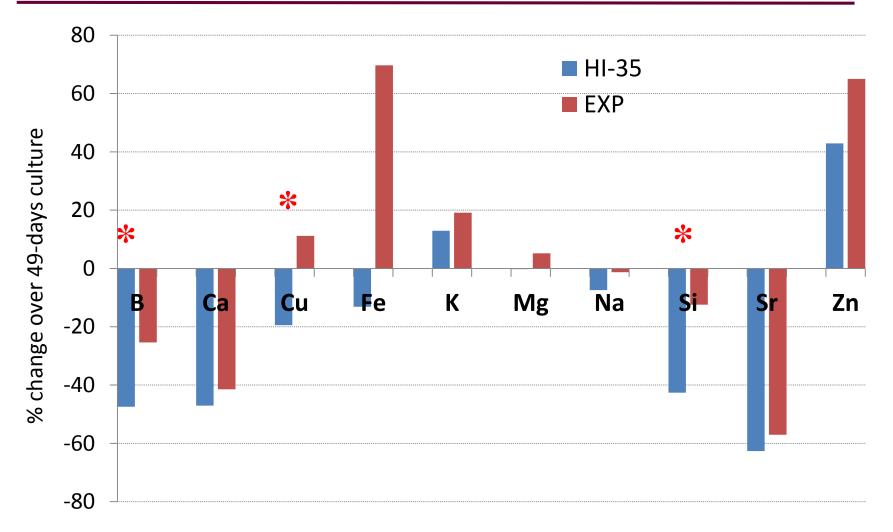

Ionic profile: Feeds

Content (mg kg ⁻¹)	HI-35	EXP-14
Al	83.3	128.5
В	46.8	53.5
Ba	4.6	8.9
Ca	2,199.6	23,482.9
Cu	18.9	38.4
Fe	377.0	359.3
K	15,055.6	10,508.2
Mg	8,299.0	2,471.9
Mn	51.1	78.8
Na	2,004.2	1,596.5
Si	44.7	66.9
Sr	15.4	24.9
Zn	193.4	177.7

As, Be, Cd, Co, Cr, Li, Mo, Ni, Pb, Se, and V were not detected or <method detection limits.


Ionic profile: Culture water

Al, As, Ba, Be, Cd, Co, Cr, Cu, Fe, Li, Mn, Mo, Ni, Pb, Se, V, and Zn were not detected or <method detection limits.


Ionic profile: Whole shrimp

Al, As, Be, Cd, Co, Cr, Li, Mn, Mo, Ni, Pb, Se, and V were not detected or <method detection limits.

Ionic profile: Tail muscle

Al, As, Ba, Be, Cd, Co, Cr, Li, Mn, Mo, Ni, Pb, Se, and V were not detected or <method detection limits.

- ➤ The differences in shrimp composition between feed types all reflected differences in the two feeds
- ➤ Shrimp ionic profile changes (↓ B, Ca, Na, Si, & Sr; ↑ Cu, K, & Zn) may be due to normal changes in physiology and metabolic needs as shrimp grew
- ➤ Similar ionic changes were also observed in three other AgriLife studies (49-77 days; in 40 & 100 m³ systems)
- ➤ Some metals (Al, Cu, Fe, Mn, Sr, V, Zn) accumulated in settled solids in a denitrification tank during a later study

Conclusion

- ➤ Under these study conditions, marketable sized shrimp were produced at a biomass of 7.3 kg/m³
- No heavy metals accumulated to problematic levels in culture water or shrimp tissue
- ➤ Feed ionic composition and normal physiological changes appeared to be the main factors associated with changes in shrimp ionic composition
- > Sr may need to be supplemented if water is to be re-used for successive culture cycles

Acknowledgements

> The National Sea Grant, Texas A&M AgriLife Research for funding

> Zeigler Bros. for the feed & funding

- > YSI for the DO monitoring systems
- > Keeton Industries for the nitrifying bacteria

- > Aquatic Eco-Systems for the foam fractionators
- > Colorite Plastics for the air diffusers

- > Firestone Specialty Products for the EPDM liner
- > Florida Organic Aquaculture for funding

